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Introduction

Facies may account for the largest permeability contrasts within the reservoir model at the scale
relevant to production.  Conditional simulation of the spatial distribution of facies is one of the most
important components of building a reservoir model. Geostatistical techniques are widely used to
produce realistic and geologically plausible realizations of facies architecture.   However, there are
two stumbling blocks to the traditional indicator variogram-based approaches: (1) intensive data
sets are needed to develop models of spatial variability by empirical curve-fitting to sample
indicator (cross-) variograms and to implement “post-processing” simulation algorithms; and (2)
the prevalent “sequential indicator simulation” (SIS) methods do not accurately produce patterns of
spatial variability for systems with three or more facies (Seifert and Jensen, 1999).     This paper
demonstrates an alternative transition probability/Markov approach that emphasizes:

• Conceptual understanding of the parameters of the spatial variability model, so that geologic
insight can support and enhance model development when data are sparse.

• Mathematical rigor, so that the “coregionalization” model (including the spatial cross-
correlations) obeys probability law.

• Consideration of spatial cross-correlation, so that juxtapositional tendencies – how
frequently one facies tends to occur adjacent to another facies – are honored.

Transition Probability Approach

Let the indicator variable, Ij(x), for facies j be defined as Ij(x) = {1, if j occurs at x; 0, otherwise},
where x is a location. In terms of indicator variables, let the marginal probability, pj, be defined as
pj=E{I j(x)}, and the joint probability, pjk(h), be defined as  pjk(h)=E{I j(x)Ik(x+h)}, where h is a lag
vector. Different statistics can be used to measure spatial variability of indicator variables, for
example, the indicator (cross-) variogram, indicator (cross-) covariance, or transition probability.
Each of these statistics is a function of joint probability and marginal probability statistics.
Fundamentally, the joint probability is the purest bivariate measure of spatial variability.  However,
the transition probabilty, tjk(h), defined here with respect to indicator variables as
tjk(h)=E{I j(x)Ik(x+h)}/E{I j(x)}, is the most interpretable. It can be defined in terms of a conditional
probability as tjk(h)=Pr(k at x+h | j at x}. Probability law requires that the row sums of the transition
probability matrix, T(h), sum to one and that the column sums obey Σj pjtjk(h)= pk .

Importantly, the transition probability can be defined in an interpretable context:

Given that facies j occurs here, what is the probability that facies k occurs there?

In fact, geologists have commonly used the transition probability to quantify spatial variability of
facies since Vistelius (1949), long before indicator geostatistical methods were developed.
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Moreover, indicator geostatistical methods can be formulated with respect to the transition
probability (Carle and Fogg, 1996).

Markov Chain Model

The most fundamental 1-D stochastic model for categorical variables is the Markov chain. In the
familiar discrete-lag formulation, a 1-D Markov chain assumes that T(h+∆h)=T(h)T(∆h) for lag h. In
the continuous-lag formulation, the Markov chain is defined by T(h)=exp(Rh), where R is the
transition rate matrix. The matrix exponential function, exp(Rh), is computed by an eigenvalue or
spectral decomposition (Agterberg, 1974).  Transition rates (entries in R) can be interpreted in a
geologic or geometric context.  The diagonal entries in R are inversely related to the negative of the
mean length (e.g., mean thickness in the vertical direction), and the off-diagonal entries are
proportional to the juxtapositional tendencies. Therefore, if one has an idea of what would be
plausible facies proportions, mean lengths, and juxtapositional tendencies, one can easily formulate a
Markov chain model of spatial variability.  Markov chains have proven to be excellent models for
vertical transition probability measurements of clastic sedimentary facies (Carle et al., 1998;
Weissmann et al., 1999). A 3-D model of spatial variability can be formulated by interpolating 1-D
Markov chain models for the principal directions (Carle and Fogg, 1997).

Conditional Simulation

The conditional simulation algorithm consists of two steps: (1) cokriging-based SIS; and (2)
simulated quenching. Both steps use the 3-D Markov chain as the spatial variability model.  In the
SIS step, a transition probability-based formulation of indicator cokriging is used to estimate the local
facies probabilities conditional to nearby data and already simulated cells. Because of the inherent
singularities caused by row and column summing constraints required by probability law, the
indicator cokriging system of equations is solved with singular value decomposition instead of a
standard linear equation solver (Carle and Fogg, 1996). Although the indicator cokriging-based SIS
vastly improves the conditional simulation of multi-category systems relative to the traditional
indicator kriging approach, the SIS algorithm still does not reproduce the spatial variability
prescribed by the model. The simulated quenching step improves the match between modeled and
simulated spatial variability.  Simulated quenching is accomplished by cycling through every cell in
the realization and inquiring whether change in facies will improve the match between modeled and
simulated spatial variability; if so, the change is accepted.

Application

The transition probability/Markov approach is applied to the “true.dat” data set supplied by
Deutsch and Journel (1998) as categorized by Goovaerts (1997).  The four “facies” from true.dat
are mapped as “reality” shown in Figure 1. This data set provides an interesting challenge to a
facies-based geostatistical approach because there are strong juxtapositional tendencies of 2-1-3-4
and the reverse; the facies are not randomly distributed in space.

  A sixty-point subset of true.dat conditions the realizations and is mapped as “data” in Figure 1.
The four realizations on the right of Figure 1 were generated using the transition probability/Markov
geostatistical approach.   Each realization displays a pattern of spatial variability that is practically
identical to “reality.”
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Figure 1. Comparison of “reality,” the exhaustive data set, with four realizations generated by the
transition probability/Markov geostatistical approach.

In practice, geostatistical simulation techniques
must work effectively in 3-D. The 3-D realization
shown in Figure 2 shows that the transition
probability/Markov approach effectively
reproduces the 3-D pattern of spatial variability.

Granted, an exhaustive data set was used to
obtain measured transition probabilities for
development of a Markov chain model.
Alternatively, a similar Markov chain model
could be developed with insights on proportions,
mean length, and the juxtapositional tendencies,
i.e. the strong 2-1-3-4 spatial ordering of the
facies. Transition rates would be set to zero or
very low for facies pairs that tend not to occur
near each other, and relatively high for facies
pairs that tend to occur adjacent to each other.

Figure 2. 3-D realization generated by transition
probability/Markov approach with pattern of spatial
variability similar to “reality” in Figure 1.

In this application, isotropy was assumed. Anisotropy and, importantly, asymmetry can easily be
built into the Markov chain model. Asymmetry means that the juxtapositional tendencies in one
direction are not necessarily the same in the opposite direction, for example, fining-upward
cyclothems of fluvial depositional facies (Allen, 1970). The transition probability allows for
asymmetry, whereas the indicator cross-variogram intrinsically assumes symmetry.  Therefore, the
traditional indicator cross-variogram approach may not be ideal for characterizing spatial variability
in geologic systems that exhibit asymmetric juxtapositional tendencies, such as fluvial systems.

Comparison with the Traditional Indicator Kriging Method

The traditional SIS indicator simulation algorithm uses indicator kriging to estimate local
conditional facies probabilities. The indicator kriging approach does not make full use of the cross-
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correlation information contained in the data (Deutsch and Journel, 1998).  As a result, the indicator
kriging-based simulation method can not necessarily reproduce nonrandom juxtapositional tendencies.
The three realizations shown in Figure 3 were produced by the SISIM program (Deutsch and Journel,
1998) using variogram models similar to those modeled by Goovaerts (1996). These realizations show
patterns of heterogeneity similar to the “SIS realization #1” of Goovaerts (1996); these realizations
clearly do not reproduce spatial variability evident in “reality” shown in Figure 1.

Figure 3. Three realizations produced by the indicator kriging-based SIS algorithm.

Conclusions

Indicator geostatistical approaches offer practical and effective means for generating simulations
of facies architecture. The transition probability/Markov approach provides a modeling framework
that encourages the integration of geologic insight and makes practical the development of
coregionalization models.  Realizations obtained from the transition probability/Markov approach
exhibit more consistency with the desired patterns of spatial variability as compared to realizations
obtained from the traditional indicator variogram-based approach.
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■ Heterogeneity is related to facies architecture.

■ Geostatistics can be used to simulate
heterogeneity at relevant scales.

■  We rarely have enough data
to apply the traditional empirical
geostatistical approach in 3-D

■ Geology should be integrated
 into geostatistics.

■ Transition Probability/Markov

Why use a Transition Probability/Markov Approach to
Improve Geostatistical Simulation of Facies Architecture?

Facts:

Approach:

Issues:
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Geostatistical Simulation of Shallow Marine Sand
Facies at Cape Canaveral, Florida
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Conclusions:
 The Transition Probability/Markov Approach

■ Categorical (indicator) geostatistics can be implemented with the
transition probability.
➤ More interpretable than the indicator variogram.

➤ Fully considers cross-correlations, including asymmetry.

➤ Amenable to mathematically simple yet theoretically
powerful Markov chain model.

➤ Formulates cokriging and simulated annealing (quenching).

➤ Accurately reproduces spatial auto and cross-correlations in conditional
simulations.

■ The transition probability/Markov approach has found many successful
applications.
➤ Data can be abundant or sparse.

➤ Markov chain parameters relate to fundamental observable attributes.


